83 research outputs found

    Explicit constructions of point sets and sequences with low discrepancy

    Full text link
    In this article we survey recent results on the explicit construction of finite point sets and infinite sequences with optimal order of Lq\mathcal{L}_q discrepancy. In 1954 Roth proved a lower bound for the L2\mathcal{L}_2 discrepancy of finite point sets in the unit cube of arbitrary dimension. Later various authors extended Roth's result to lower bounds also for the Lq\mathcal{L}_q discrepancy and for infinite sequences. While it was known already from the early 1980s on that Roth's lower bound is best possible in the order of magnitude, it was a longstanding open question to find explicit constructions of point sets and sequences with optimal order of L2\mathcal{L}_2 discrepancy. This problem was solved by Chen and Skriganov in 2002 for finite point sets and recently by the authors of this article for infinite sequences. These constructions can also be extended to give optimal order of the Lq\mathcal{L}_q discrepancy of finite point sets for q∈(1,∞)q \in (1,\infty). The main aim of this article is to give an overview of these constructions and related results

    The inverse of the star-discrepancy problem and the generation of pseudo-random numbers

    Full text link
    The inverse of the star-discrepancy problem asks for point sets PN,sP_{N,s} of size NN in the ss-dimensional unit cube [0,1]s[0,1]^s whose star-discrepancy Dβˆ—(PN,s)D^\ast(P_{N,s}) satisfies Dβˆ—(PN,s)≀Cs/N,D^\ast(P_{N,s}) \le C \sqrt{s/N}, where C>0C> 0 is a constant independent of NN and ss. The first existence results in this direction were shown by Heinrich, Novak, Wasilkowski, and Wo\'{z}niakowski in 2001, and a number of improvements have been shown since then. Until now only proofs that such point sets exist are known. Since such point sets would be useful in applications, the big open problem is to find explicit constructions of suitable point sets PN,sP_{N,s}. We review the current state of the art on this problem and point out some connections to pseudo-random number generators
    • …
    corecore